Thanks for using Compiler Explorer
Sponsors
Jakt
C++
Ada
Analysis
Android Java
Android Kotlin
Assembly
C
C3
Carbon
C++ (Circle)
CIRCT
Clean
CMake
CMakeScript
COBOL
C++ for OpenCL
MLIR
Cppx
Cppx-Blue
Cppx-Gold
Cpp2-cppfront
Crystal
C#
CUDA C++
D
Dart
Elixir
Erlang
Fortran
F#
GLSL
Go
Haskell
HLSL
Hook
Hylo
IL
ispc
Java
Julia
Kotlin
LLVM IR
LLVM MIR
Modula-2
Nim
Objective-C
Objective-C++
OCaml
OpenCL C
Pascal
Pony
Python
Racket
Ruby
Rust
Snowball
Scala
Solidity
Spice
SPIR-V
Swift
LLVM TableGen
Toit
TypeScript Native
V
Vala
Visual Basic
Vyper
WASM
Zig
Javascript
GIMPLE
Ygen
cpp2_cppfront source #6
Output
Compile to binary object
Link to binary
Execute the code
Intel asm syntax
Demangle identifiers
Verbose demangling
Filters
Unused labels
Library functions
Directives
Comments
Horizontal whitespace
Debug intrinsics
Compiler
cppfront trunk
Options
Source code
t: @struct type = { f: (this) -> int == 0; } g: (f) = { assert(t().f() == 0); // OK. static_assert(t().f() == 0); // Error: Argument `f` isn't "`constexpr`". } main: () = { // g(0); g(std::identity()); // Might be OK since P2280R4 (unimplemented). }
c source #1
Output
Compile to binary object
Link to binary
Execute the code
Intel asm syntax
Demangle identifiers
Verbose demangling
Filters
Unused labels
Library functions
Directives
Comments
Horizontal whitespace
Debug intrinsics
Compiler
6502 cc65 2.17
6502 cc65 2.18
6502 cc65 2.19
6502 cc65 trunk
ARM GCC 10.2.0 (linux)
ARM GCC 10.2.1 (none)
ARM GCC 10.3.0 (linux)
ARM GCC 10.3.1 (2021.07 none)
ARM GCC 10.3.1 (2021.10 none)
ARM GCC 10.5.0
ARM GCC 11.1.0 (linux)
ARM GCC 11.2.0 (linux)
ARM GCC 11.2.1 (none)
ARM GCC 11.3.0 (linux)
ARM GCC 11.4.0
ARM GCC 12.1.0 (linux)
ARM GCC 12.2.0 (linux)
ARM GCC 12.3.0
ARM GCC 12.4.0
ARM GCC 13.1.0 (linux)
ARM GCC 13.2.0
ARM GCC 13.2.0 (unknown-eabi)
ARM GCC 13.3.0
ARM GCC 13.3.0 (unknown-eabi)
ARM GCC 14.1.0
ARM GCC 14.1.0 (unknown-eabi)
ARM GCC 14.2.0
ARM GCC 14.2.0 (unknown-eabi)
ARM GCC 4.5.4 (linux)
ARM GCC 4.6.4 (linux)
ARM GCC 5.4 (linux)
ARM GCC 5.4.1 (none)
ARM GCC 6.3.0 (linux)
ARM GCC 6.4.0 (linux)
ARM GCC 7.2.1 (none)
ARM GCC 7.3.0 (linux)
ARM GCC 7.5.0 (linux)
ARM GCC 8.2.0 (WinCE)
ARM GCC 8.2.0 (linux)
ARM GCC 8.3.1 (none)
ARM GCC 8.5.0 (linux)
ARM GCC 9.2.1 (none)
ARM GCC 9.3.0 (linux)
ARM GCC trunk (linux)
ARM msvc v19.0 (WINE)
ARM msvc v19.10 (WINE)
ARM msvc v19.14 (WINE)
ARM64 GCC 10.2.0
ARM64 GCC 10.3.0
ARM64 GCC 10.4.0
ARM64 GCC 10.5.0
ARM64 GCC 11.1.0
ARM64 GCC 11.2.0
ARM64 GCC 11.3.0
ARM64 GCC 11.4.0
ARM64 GCC 12.1.0
ARM64 GCC 12.2.0
ARM64 GCC 12.3.0
ARM64 GCC 12.4.0
ARM64 GCC 13.1.0
ARM64 GCC 13.2.0
ARM64 GCC 13.3.0
ARM64 GCC 14.1.0
ARM64 GCC 14.2.0
ARM64 GCC 4.9.4
ARM64 GCC 5.4
ARM64 GCC 5.5.0
ARM64 GCC 6.3
ARM64 GCC 6.4.0
ARM64 GCC 7.3.0
ARM64 GCC 7.5.0
ARM64 GCC 8.2.0
ARM64 GCC 8.5.0
ARM64 GCC 9.3.0
ARM64 GCC 9.4.0
ARM64 GCC 9.5.0
ARM64 GCC trunk
ARM64 Morello GCC 10.1.0 Alpha 1
ARM64 Morello GCC 10.1.2 Alpha 2
ARM64 msvc v19.14 (WINE)
AVR gcc 10.3.0
AVR gcc 11.1.0
AVR gcc 12.1.0
AVR gcc 12.2.0
AVR gcc 12.3.0
AVR gcc 12.4.0
AVR gcc 13.1.0
AVR gcc 13.2.0
AVR gcc 13.3.0
AVR gcc 14.1.0
AVR gcc 14.2.0
AVR gcc 4.5.4
AVR gcc 4.6.4
AVR gcc 5.4.0
AVR gcc 9.2.0
AVR gcc 9.3.0
Arduino Mega (1.8.9)
Arduino Uno (1.8.9)
BPF clang (trunk)
BPF clang 13.0.0
BPF clang 14.0.0
BPF clang 15.0.0
BPF clang 16.0.0
BPF clang 17.0.1
BPF clang 18.1.0
BPF gcc 13.1.0
BPF gcc 13.2.0
BPF gcc 13.3.0
BPF gcc 14.1.0
BPF gcc 14.2.0
BPF gcc trunk
Chibicc 2020-12-07
FRC 2019
FRC 2020
FRC 2023
HPPA gcc 14.2.0
K1C gcc 7.4
K1C gcc 7.5
KVX ACB 4.1.0 (GCC 7.5.0)
KVX ACB 4.1.0-cd1 (GCC 7.5.0)
KVX ACB 4.10.0 (GCC 10.3.1)
KVX ACB 4.11.1 (GCC 10.3.1)
KVX ACB 4.12.0 (GCC 11.3.0)
KVX ACB 4.2.0 (GCC 7.5.0)
KVX ACB 4.3.0 (GCC 7.5.0)
KVX ACB 4.4.0 (GCC 7.5.0)
KVX ACB 4.6.0 (GCC 9.4.1)
KVX ACB 4.8.0 (GCC 9.4.1)
KVX ACB 4.9.0 (GCC 9.4.1)
KVX ACB 5.0.0 (GCC 12.2.1)
KVX ACB 5.2.0 (GCC 13.2.1)
LC3 (trunk)
M68K clang (trunk)
M68K gcc 13.1.0
M68K gcc 13.2.0
M68K gcc 13.3.0
M68K gcc 14.1.0
M68K gcc 14.2.0
MRISC32 gcc (trunk)
MSP430 gcc 12.1.0
MSP430 gcc 12.2.0
MSP430 gcc 12.3.0
MSP430 gcc 12.4.0
MSP430 gcc 13.1.0
MSP430 gcc 13.2.0
MSP430 gcc 13.3.0
MSP430 gcc 14.1.0
MSP430 gcc 14.2.0
MSP430 gcc 4.5.3
MSP430 gcc 5.3.0
MSP430 gcc 6.2.1
MinGW clang 14.0.3
MinGW clang 14.0.6
MinGW clang 15.0.7
MinGW clang 16.0.0
MinGW clang 16.0.2
MinGW gcc 11.3.0
MinGW gcc 12.1.0
MinGW gcc 12.2.0
MinGW gcc 13.1.0
POWER64 gcc 11.2.0
POWER64 gcc 12.1.0
POWER64 gcc 12.2.0
POWER64 gcc 12.3.0
POWER64 gcc 12.4.0
POWER64 gcc 13.1.0
POWER64 gcc 13.2.0
POWER64 gcc 13.3.0
POWER64 gcc 14.1.0
POWER64 gcc 14.2.0
POWER64 gcc trunk
RISC-V (32-bits) gcc (trunk)
RISC-V (32-bits) gcc 10.2.0
RISC-V (32-bits) gcc 10.3.0
RISC-V (32-bits) gcc 11.2.0
RISC-V (32-bits) gcc 11.3.0
RISC-V (32-bits) gcc 11.4.0
RISC-V (32-bits) gcc 12.1.0
RISC-V (32-bits) gcc 12.2.0
RISC-V (32-bits) gcc 12.3.0
RISC-V (32-bits) gcc 12.4.0
RISC-V (32-bits) gcc 13.1.0
RISC-V (32-bits) gcc 13.2.0
RISC-V (32-bits) gcc 13.3.0
RISC-V (32-bits) gcc 14.1.0
RISC-V (32-bits) gcc 14.2.0
RISC-V (32-bits) gcc 8.2.0
RISC-V (32-bits) gcc 8.5.0
RISC-V (32-bits) gcc 9.4.0
RISC-V (64-bits) gcc (trunk)
RISC-V (64-bits) gcc 10.2.0
RISC-V (64-bits) gcc 10.3.0
RISC-V (64-bits) gcc 11.2.0
RISC-V (64-bits) gcc 11.3.0
RISC-V (64-bits) gcc 11.4.0
RISC-V (64-bits) gcc 12.1.0
RISC-V (64-bits) gcc 12.2.0
RISC-V (64-bits) gcc 12.3.0
RISC-V (64-bits) gcc 12.4.0
RISC-V (64-bits) gcc 13.1.0
RISC-V (64-bits) gcc 13.2.0
RISC-V (64-bits) gcc 13.3.0
RISC-V (64-bits) gcc 14.1.0
RISC-V (64-bits) gcc 14.2.0
RISC-V (64-bits) gcc 8.2.0
RISC-V (64-bits) gcc 8.5.0
RISC-V (64-bits) gcc 9.4.0
RISC-V rv32gc clang (trunk)
RISC-V rv32gc clang 10.0.0
RISC-V rv32gc clang 10.0.1
RISC-V rv32gc clang 11.0.0
RISC-V rv32gc clang 11.0.1
RISC-V rv32gc clang 12.0.0
RISC-V rv32gc clang 12.0.1
RISC-V rv32gc clang 13.0.0
RISC-V rv32gc clang 13.0.1
RISC-V rv32gc clang 14.0.0
RISC-V rv32gc clang 15.0.0
RISC-V rv32gc clang 16.0.0
RISC-V rv32gc clang 17.0.1
RISC-V rv32gc clang 18.1.0
RISC-V rv32gc clang 9.0.0
RISC-V rv32gc clang 9.0.1
RISC-V rv64gc clang (trunk)
RISC-V rv64gc clang 10.0.0
RISC-V rv64gc clang 10.0.1
RISC-V rv64gc clang 11.0.0
RISC-V rv64gc clang 11.0.1
RISC-V rv64gc clang 12.0.0
RISC-V rv64gc clang 12.0.1
RISC-V rv64gc clang 13.0.0
RISC-V rv64gc clang 13.0.1
RISC-V rv64gc clang 14.0.0
RISC-V rv64gc clang 15.0.0
RISC-V rv64gc clang 16.0.0
RISC-V rv64gc clang 17.0.1
RISC-V rv64gc clang 18.1.0
RISC-V rv64gc clang 9.0.0
RISC-V rv64gc clang 9.0.1
Raspbian Buster
Raspbian Stretch
SDCC 4.0.0
SDCC 4.1.0
SDCC 4.2.0
SDCC 4.3.0
SDCC 4.4.0
SPARC LEON gcc 12.2.0
SPARC LEON gcc 12.3.0
SPARC LEON gcc 12.4.0
SPARC LEON gcc 13.1.0
SPARC LEON gcc 13.2.0
SPARC LEON gcc 13.3.0
SPARC LEON gcc 14.1.0
SPARC LEON gcc 14.2.0
SPARC gcc 12.2.0
SPARC gcc 12.3.0
SPARC gcc 12.4.0
SPARC gcc 13.1.0
SPARC gcc 13.2.0
SPARC gcc 13.3.0
SPARC gcc 14.1.0
SPARC gcc 14.2.0
SPARC64 gcc 12.2.0
SPARC64 gcc 12.3.0
SPARC64 gcc 12.4.0
SPARC64 gcc 13.1.0
SPARC64 gcc 13.2.0
SPARC64 gcc 13.3.0
SPARC64 gcc 14.1.0
SPARC64 gcc 14.2.0
TCC (trunk)
TCC 0.9.27
TI C6x gcc 12.2.0
TI C6x gcc 12.3.0
TI C6x gcc 12.4.0
TI C6x gcc 13.1.0
TI C6x gcc 13.2.0
TI C6x gcc 13.3.0
TI C6x gcc 14.1.0
TI C6x gcc 14.2.0
TI CL430 21.6.1
VAX gcc NetBSDELF 10.4.0
VAX gcc NetBSDELF 10.5.0 (Nov 15 03:50:22 2023)
WebAssembly clang (trunk)
Xtensa ESP32 gcc 11.2.0 (2022r1)
Xtensa ESP32 gcc 12.2.0 (20230208)
Xtensa ESP32 gcc 8.2.0 (2019r2)
Xtensa ESP32 gcc 8.2.0 (2020r1)
Xtensa ESP32 gcc 8.2.0 (2020r2)
Xtensa ESP32 gcc 8.4.0 (2020r3)
Xtensa ESP32 gcc 8.4.0 (2021r1)
Xtensa ESP32 gcc 8.4.0 (2021r2)
Xtensa ESP32-S2 gcc 11.2.0 (2022r1)
Xtensa ESP32-S2 gcc 12.2.0 (20230208)
Xtensa ESP32-S2 gcc 8.2.0 (2019r2)
Xtensa ESP32-S2 gcc 8.2.0 (2020r1)
Xtensa ESP32-S2 gcc 8.2.0 (2020r2)
Xtensa ESP32-S2 gcc 8.4.0 (2020r3)
Xtensa ESP32-S2 gcc 8.4.0 (2021r1)
Xtensa ESP32-S2 gcc 8.4.0 (2021r2)
Xtensa ESP32-S3 gcc 11.2.0 (2022r1)
Xtensa ESP32-S3 gcc 12.2.0 (20230208)
Xtensa ESP32-S3 gcc 8.4.0 (2020r3)
Xtensa ESP32-S3 gcc 8.4.0 (2021r1)
Xtensa ESP32-S3 gcc 8.4.0 (2021r2)
arm64 msvc v19.20 VS16.0
arm64 msvc v19.21 VS16.1
arm64 msvc v19.22 VS16.2
arm64 msvc v19.23 VS16.3
arm64 msvc v19.24 VS16.4
arm64 msvc v19.25 VS16.5
arm64 msvc v19.27 VS16.7
arm64 msvc v19.28 VS16.8
arm64 msvc v19.28 VS16.9
arm64 msvc v19.29 VS16.10
arm64 msvc v19.29 VS16.11
arm64 msvc v19.30 VS17.0
arm64 msvc v19.31 VS17.1
arm64 msvc v19.32 VS17.2
arm64 msvc v19.33 VS17.3
arm64 msvc v19.34 VS17.4
arm64 msvc v19.35 VS17.5
arm64 msvc v19.36 VS17.6
arm64 msvc v19.37 VS17.7
arm64 msvc v19.38 VS17.8
arm64 msvc v19.39 VS17.9
arm64 msvc v19.40 VS17.10
arm64 msvc v19.latest
armv7-a clang (trunk)
armv7-a clang 10.0.0
armv7-a clang 10.0.1
armv7-a clang 11.0.0
armv7-a clang 11.0.1
armv7-a clang 12.0.0
armv7-a clang 12.0.1
armv7-a clang 13.0.0
armv7-a clang 13.0.1
armv7-a clang 14.0.0
armv7-a clang 15.0.0
armv7-a clang 16.0.0
armv7-a clang 17.0.1
armv7-a clang 18.1.0
armv7-a clang 9.0.0
armv7-a clang 9.0.1
armv8-a clang (all architectural features, trunk)
armv8-a clang (trunk)
armv8-a clang 10.0.0
armv8-a clang 10.0.1
armv8-a clang 11.0.0
armv8-a clang 11.0.1
armv8-a clang 12.0.0
armv8-a clang 12.0.1
armv8-a clang 13.0.0
armv8-a clang 13.0.1
armv8-a clang 14.0.0
armv8-a clang 15.0.0
armv8-a clang 16.0.0
armv8-a clang 17.0.1
armv8-a clang 18.1.0
armv8-a clang 9.0.0
armv8-a clang 9.0.1
clang 12 for DPU (rel 2023.2.0)
cproc-master
llvm-mos commander X16
llvm-mos commodore 64
llvm-mos mega65
llvm-mos nes-cnrom
llvm-mos nes-mmc1
llvm-mos nes-mmc3
llvm-mos nes-nrom
llvm-mos osi-c1p
loongarch64 gcc 12.2.0
loongarch64 gcc 12.3.0
loongarch64 gcc 12.4.0
loongarch64 gcc 13.1.0
loongarch64 gcc 13.2.0
loongarch64 gcc 13.3.0
loongarch64 gcc 14.1.0
loongarch64 gcc 14.2.0
mips (el) gcc 12.1.0
mips (el) gcc 12.2.0
mips (el) gcc 12.3.0
mips (el) gcc 12.4.0
mips (el) gcc 13.1.0
mips (el) gcc 13.2.0
mips (el) gcc 13.3.0
mips (el) gcc 14.1.0
mips (el) gcc 14.2.0
mips (el) gcc 4.9.4
mips (el) gcc 5.4
mips (el) gcc 5.5.0
mips (el) gcc 9.5.0
mips clang 13.0.0
mips clang 14.0.0
mips clang 15.0.0
mips clang 16.0.0
mips clang 17.0.1
mips clang 18.1.0
mips gcc 11.2.0
mips gcc 12.1.0
mips gcc 12.2.0
mips gcc 12.3.0
mips gcc 12.4.0
mips gcc 13.1.0
mips gcc 13.2.0
mips gcc 13.3.0
mips gcc 14.1.0
mips gcc 14.2.0
mips gcc 4.9.4
mips gcc 5.4
mips gcc 5.5.0
mips gcc 9.3.0 (codescape)
mips gcc 9.5.0
mips64 (el) gcc 12.1.0
mips64 (el) gcc 12.2.0
mips64 (el) gcc 12.3.0
mips64 (el) gcc 12.4.0
mips64 (el) gcc 13.1.0
mips64 (el) gcc 13.2.0
mips64 (el) gcc 13.3.0
mips64 (el) gcc 14.1.0
mips64 (el) gcc 14.2.0
mips64 (el) gcc 4.9.4
mips64 (el) gcc 5.4.0
mips64 (el) gcc 5.5.0
mips64 (el) gcc 9.5.0
mips64 clang 13.0.0
mips64 clang 14.0.0
mips64 clang 15.0.0
mips64 clang 16.0.0
mips64 clang 17.0.1
mips64 clang 18.1.0
mips64 gcc 11.2.0
mips64 gcc 12.1.0
mips64 gcc 12.2.0
mips64 gcc 12.3.0
mips64 gcc 12.4.0
mips64 gcc 13.1.0
mips64 gcc 13.2.0
mips64 gcc 13.3.0
mips64 gcc 14.1.0
mips64 gcc 14.2.0
mips64 gcc 4.9.4
mips64 gcc 5.4
mips64 gcc 5.5.0
mips64 gcc 9.5.0
mips64el clang 13.0.0
mips64el clang 14.0.0
mips64el clang 15.0.0
mips64el clang 16.0.0
mips64el clang 17.0.1
mips64el clang 18.1.0
mipsel clang 13.0.0
mipsel clang 14.0.0
mipsel clang 15.0.0
mipsel clang 16.0.0
mipsel clang 17.0.1
mipsel clang 18.1.0
movfuscator (trunk)
nanoMIPS gcc 6.3.0
power gcc 11.2.0
power gcc 12.1.0
power gcc 12.2.0
power gcc 12.3.0
power gcc 12.4.0
power gcc 13.1.0
power gcc 13.2.0
power gcc 13.3.0
power gcc 14.1.0
power gcc 14.2.0
power gcc 4.8.5
power64 AT12.0 (gcc8)
power64 AT13.0 (gcc9)
power64le AT12.0 (gcc8)
power64le AT13.0 (gcc9)
power64le clang (trunk)
power64le gcc 11.2.0
power64le gcc 12.1.0
power64le gcc 12.2.0
power64le gcc 12.3.0
power64le gcc 12.4.0
power64le gcc 13.1.0
power64le gcc 13.2.0
power64le gcc 13.3.0
power64le gcc 14.1.0
power64le gcc 14.2.0
power64le gcc 6.3.0
power64le gcc trunk
powerpc64 clang (trunk)
ppci 0.5.5
s390x gcc 11.2.0
s390x gcc 12.1.0
s390x gcc 12.2.0
s390x gcc 12.3.0
s390x gcc 12.4.0
s390x gcc 13.1.0
s390x gcc 13.2.0
s390x gcc 13.3.0
s390x gcc 14.1.0
s390x gcc 14.2.0
sh gcc 12.2.0
sh gcc 12.3.0
sh gcc 12.4.0
sh gcc 13.1.0
sh gcc 13.2.0
sh gcc 13.3.0
sh gcc 14.1.0
sh gcc 14.2.0
sh gcc 4.9.4
sh gcc 9.5.0
vast (trunk)
x64 msvc v19.0 (WINE)
x64 msvc v19.10 (WINE)
x64 msvc v19.14 (WINE)
x64 msvc v19.20 VS16.0
x64 msvc v19.21 VS16.1
x64 msvc v19.22 VS16.2
x64 msvc v19.23 VS16.3
x64 msvc v19.24 VS16.4
x64 msvc v19.25 VS16.5
x64 msvc v19.27 VS16.7
x64 msvc v19.28 VS16.8
x64 msvc v19.28 VS16.9
x64 msvc v19.29 VS16.10
x64 msvc v19.29 VS16.11
x64 msvc v19.30 VS17.0
x64 msvc v19.31 VS17.1
x64 msvc v19.32 VS17.2
x64 msvc v19.33 VS17.3
x64 msvc v19.34 VS17.4
x64 msvc v19.35 VS17.5
x64 msvc v19.36 VS17.6
x64 msvc v19.37 VS17.7
x64 msvc v19.38 VS17.8
x64 msvc v19.39 VS17.9
x64 msvc v19.40 VS17.10
x64 msvc v19.latest
x86 CompCert 3.10
x86 CompCert 3.11
x86 CompCert 3.12
x86 CompCert 3.9
x86 gcc 1.27
x86 msvc v19.0 (WINE)
x86 msvc v19.10 (WINE)
x86 msvc v19.14 (WINE)
x86 msvc v19.20 VS16.0
x86 msvc v19.21 VS16.1
x86 msvc v19.22 VS16.2
x86 msvc v19.23 VS16.3
x86 msvc v19.24 VS16.4
x86 msvc v19.25 VS16.5
x86 msvc v19.27 VS16.7
x86 msvc v19.28 VS16.8
x86 msvc v19.28 VS16.9
x86 msvc v19.29 VS16.10
x86 msvc v19.29 VS16.11
x86 msvc v19.30 VS17.0
x86 msvc v19.31 VS17.1
x86 msvc v19.32 VS17.2
x86 msvc v19.33 VS17.3
x86 msvc v19.34 VS17.4
x86 msvc v19.35 VS17.5
x86 msvc v19.36 VS17.6
x86 msvc v19.37 VS17.7
x86 msvc v19.38 VS17.8
x86 msvc v19.39 VS17.9
x86 msvc v19.40 VS17.10
x86 msvc v19.latest
x86 nvc 24.11
x86 nvc 24.9
x86 tendra (trunk)
x86-64 clang (assertions trunk)
x86-64 clang (thephd.dev)
x86-64 clang (trunk)
x86-64 clang (widberg)
x86-64 clang 10.0.0
x86-64 clang 10.0.1
x86-64 clang 11.0.0
x86-64 clang 11.0.1
x86-64 clang 12.0.0
x86-64 clang 12.0.1
x86-64 clang 13.0.0
x86-64 clang 13.0.1
x86-64 clang 14.0.0
x86-64 clang 15.0.0
x86-64 clang 16.0.0
x86-64 clang 17.0.1
x86-64 clang 18.1.0
x86-64 clang 19.1.0
x86-64 clang 3.0.0
x86-64 clang 3.1
x86-64 clang 3.2
x86-64 clang 3.3
x86-64 clang 3.4.1
x86-64 clang 3.5
x86-64 clang 3.5.1
x86-64 clang 3.5.2
x86-64 clang 3.6
x86-64 clang 3.7
x86-64 clang 3.7.1
x86-64 clang 3.8
x86-64 clang 3.8.1
x86-64 clang 3.9.0
x86-64 clang 3.9.1
x86-64 clang 4.0.0
x86-64 clang 4.0.1
x86-64 clang 5.0.0
x86-64 clang 5.0.1
x86-64 clang 5.0.2
x86-64 clang 6.0.0
x86-64 clang 6.0.1
x86-64 clang 7.0.0
x86-64 clang 7.0.1
x86-64 clang 7.1.0
x86-64 clang 8.0.0
x86-64 clang 8.0.1
x86-64 clang 9.0.0
x86-64 clang 9.0.1
x86-64 gcc (trunk)
x86-64 gcc 10.1
x86-64 gcc 10.2
x86-64 gcc 10.3
x86-64 gcc 10.4
x86-64 gcc 10.5
x86-64 gcc 11.1
x86-64 gcc 11.2
x86-64 gcc 11.3
x86-64 gcc 11.4
x86-64 gcc 12.1
x86-64 gcc 12.2
x86-64 gcc 12.3
x86-64 gcc 12.4
x86-64 gcc 13.1
x86-64 gcc 13.2
x86-64 gcc 13.3
x86-64 gcc 14.1
x86-64 gcc 14.2
x86-64 gcc 3.4.6
x86-64 gcc 4.0.4
x86-64 gcc 4.1.2
x86-64 gcc 4.4.7
x86-64 gcc 4.5.3
x86-64 gcc 4.6.4
x86-64 gcc 4.7.1
x86-64 gcc 4.7.2
x86-64 gcc 4.7.3
x86-64 gcc 4.7.4
x86-64 gcc 4.8.1
x86-64 gcc 4.8.2
x86-64 gcc 4.8.3
x86-64 gcc 4.8.4
x86-64 gcc 4.8.5
x86-64 gcc 4.9.0
x86-64 gcc 4.9.1
x86-64 gcc 4.9.2
x86-64 gcc 4.9.3
x86-64 gcc 4.9.4
x86-64 gcc 5.1
x86-64 gcc 5.2
x86-64 gcc 5.3
x86-64 gcc 5.4
x86-64 gcc 6.1
x86-64 gcc 6.2
x86-64 gcc 6.3
x86-64 gcc 6.5
x86-64 gcc 7.1
x86-64 gcc 7.2
x86-64 gcc 7.3
x86-64 gcc 7.4
x86-64 gcc 7.5
x86-64 gcc 8.1
x86-64 gcc 8.2
x86-64 gcc 8.3
x86-64 gcc 8.4
x86-64 gcc 8.5
x86-64 gcc 9.1
x86-64 gcc 9.2
x86-64 gcc 9.3
x86-64 gcc 9.4
x86-64 gcc 9.5
x86-64 icc 13.0.1
x86-64 icc 16.0.3
x86-64 icc 17.0.0
x86-64 icc 18.0.0
x86-64 icc 19.0.0
x86-64 icc 19.0.1
x86-64 icc 2021.1.2
x86-64 icc 2021.10.0
x86-64 icc 2021.2.0
x86-64 icc 2021.3.0
x86-64 icc 2021.4.0
x86-64 icc 2021.5.0
x86-64 icc 2021.6.0
x86-64 icc 2021.7.0
x86-64 icc 2021.7.1
x86-64 icc 2021.8.0
x86-64 icc 2021.9.0
x86-64 icx (latest)
x86-64 icx 2021.1.2
x86-64 icx 2021.2.0
x86-64 icx 2021.3.0
x86-64 icx 2021.4.0
x86-64 icx 2022.0.0
x86-64 icx 2022.1.0
x86-64 icx 2022.2.0
x86-64 icx 2022.2.1
x86-64 icx 2023.0.0
x86-64 icx 2023.1.0
x86-64 icx 2024.0.0
x86_64 CompCert 3.10
x86_64 CompCert 3.11
x86_64 CompCert 3.12
x86_64 CompCert 3.9
z88dk 2.2
zig cc 0.10.0
zig cc 0.11.0
zig cc 0.12.0
zig cc 0.12.1
zig cc 0.13.0
zig cc 0.6.0
zig cc 0.7.0
zig cc 0.7.1
zig cc 0.8.0
zig cc 0.9.0
zig cc trunk
Options
Source code
// #include "https://raw.githubusercontent.com/hsutter/cppfront/main/include/cpp2util.h" // Copyright (c) Herb Sutter // SPDX-License-Identifier: CC-BY-NC-ND-4.0 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. //=========================================================================== // Cpp2 utilities: // Language support implementations // #include'd by generated Cpp1 code //=========================================================================== #ifndef CPP2_UTIL_H #define CPP2_UTIL_H // If this implementation doesn't support source_location yet, disable it #include <version> #if !defined(_MSC_VER) && !defined(__cpp_lib_source_location) #undef CPP2_USE_SOURCE_LOCATION #endif // If the cppfront user requested making the entire C++ standard library // available via module import or header include, do that #if defined(CPP2_IMPORT_STD) || defined(CPP2_INCLUDE_STD) // If C++23 'import std;' was requested and is available, use that #if defined(CPP2_IMPORT_STD) && defined(__cpp_lib_modules) #ifndef _MSC_VER // This is the ideal -- note that we just voted "import std;" // into draft C++23 in late July 2022, so implementers haven't // had time to catch up yet import std; #else // MSVC // Note: When C++23 "import std;" is available, we will switch to that here // In the meantime, this is what works on MSVC which is the only compiler // I've been able to get access to that implements modules enough to demo // (but we'll have more full-C++20 compilers soon!) #ifdef _MSC_VER #include "intrin.h" #endif import std.core; import std.filesystem; import std.memory; import std.regex; import std.threading; // Suppress spurious MSVC modules warning #pragma warning(disable:5050) #endif // Otherwise, as a fallback if 'import std;' was requested, or else // because 'include all std' was requested, include all the standard // headers, with a feature test #ifdef for each header that // isn't yet supported by all of { VS 2022, g++-10, clang++-12 } #else #ifdef _MSC_VER #include "intrin.h" #endif #include <algorithm> #include <any> #include <array> #include <atomic> #ifdef __cpp_lib_barrier #include <barrier> #endif #include <bit> #include <bitset> #include <cassert> #include <cctype> #include <cerrno> #include <cfenv> #include <cfloat> #include <charconv> #include <chrono> #include <cinttypes> #include <climits> #include <clocale> #include <cmath> #include <codecvt> #include <compare> #include <complex> #include <concepts> #include <condition_variable> #ifdef __cpp_lib_coroutine #include <coroutine> #endif #include <csetjmp> #include <csignal> #include <cstdarg> #include <cstddef> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <ctime> #if __has_include(<cuchar>) #include <cuchar> #endif #include <cwchar> #include <cwctype> #include <deque> #ifndef CPP2_NO_EXCEPTIONS #include <exception> #endif // libstdc++ currently has a dependency on linking TBB if <execution> is // included, and TBB seems to be not automatically installed and linkable // on some GCC installations, so let's not pull in that little-used header // in our -pure-cpp2 "import std;" simulation mode... if you need this, // use mixed mode (not -pure-cpp2) and #include all the headers you need // including this one // // #include <execution> #ifdef __cpp_lib_expected #include <expected> #endif #include <filesystem> #if defined(__cpp_lib_format) || (defined(_MSC_VER) && _MSC_VER >= 1929) #include <format> #endif #ifdef __cpp_lib_flat_map #include <flat_map> #endif #ifdef __cpp_lib_flat_set #include <flat_set> #endif #include <forward_list> #include <fstream> #include <functional> #include <future> #ifdef __cpp_lib_generator #include <generator> #endif #include <initializer_list> #include <iomanip> #include <ios> #include <iosfwd> #include <iostream> #include <iso646.h> #include <istream> #include <iterator> #ifdef __cpp_lib_latch #include <latch> #endif #include <limits> #include <list> #include <locale> #include <map> #ifdef __cpp_lib_mdspan #include <mdspan> #endif #include <memory> #ifdef __cpp_lib_memory_resource #include <memory_resource> #endif #include <mutex> #include <new> #include <numbers> #include <numeric> #include <optional> #include <ostream> #ifdef __cpp_lib_print #include <print> #endif #include <queue> #include <random> #include <ranges> #include <ratio> #include <regex> #include <scoped_allocator> #ifdef __cpp_lib_semaphore #include <semaphore> #endif #include <set> #include <shared_mutex> #ifdef __cpp_lib_source_location #include <source_location> #endif #include <span> #ifdef __cpp_lib_spanstream #include <spanstream> #endif #include <sstream> #include <stack> #ifdef __cpp_lib_stacktrace #include <stacktrace> #endif #ifdef __cpp_lib_stdatomic_h #include <stdatomic.h> #endif #include <stdexcept> #if __has_include(<stdfloat>) #include <stdfloat> #endif #ifdef __cpp_lib_jthread #include <stop_token> #endif #include <streambuf> #include <string> #include <string_view> #ifdef __cpp_lib_syncstream #include <syncstream> #endif #include <system_error> #include <thread> #include <tuple> #include <type_traits> #include <typeindex> #ifndef CPP2_NO_RTTI #include <typeinfo> #endif #include <unordered_map> #include <unordered_set> #include <utility> #include <valarray> #include <variant> #include <vector> #endif // Otherwise, just #include the facilities used in this header #else #ifdef _MSC_VER #include "intrin.h" #endif #include <algorithm> #include <any> #include <compare> #include <concepts> #include <cstddef> #include <cstdint> #include <cstdio> #ifndef CPP2_NO_EXCEPTIONS #include <exception> #endif #if defined(__cpp_lib_format) || (defined(_MSC_VER) && _MSC_VER >= 1929) #include <format> #endif #include <functional> #include <iostream> #include <iterator> #include <limits> #include <memory> #include <new> #include <random> #include <optional> #if defined(CPP2_USE_SOURCE_LOCATION) #include <source_location> #endif #include <span> #include <string> #include <string_view> #include <system_error> #include <tuple> #include <type_traits> #ifndef CPP2_NO_RTTI #include <typeinfo> #endif #include <utility> #include <variant> #include <vector> #endif #define CPP2_TYPEOF(x) std::remove_cvref_t<decltype(x)> #define CPP2_FORWARD(x) std::forward<decltype(x)>(x) #define CPP2_PACK_EMPTY(x) (sizeof...(x) == 0) #define CPP2_CONTINUE_BREAK(NAME) goto CONTINUE_##NAME; CONTINUE_##NAME: continue; goto BREAK_##NAME; BREAK_##NAME: break; // these redundant goto's to avoid 'unused label' warnings #if defined(_MSC_VER) // MSVC can't handle 'inline constexpr' yet in all cases #define CPP2_CONSTEXPR const #else #define CPP2_CONSTEXPR constexpr #endif namespace cpp2 { //----------------------------------------------------------------------- // // Convenience names for fundamental types // // Note: De jure, some of these are optional per the C and C++ standards // De facto, all of these are supported in all implementations I know of // //----------------------------------------------------------------------- // // Encouraged by default: Fixed-precision names using i8 = std::int8_t ; using i16 = std::int16_t ; using i32 = std::int32_t ; using i64 = std::int64_t ; using u8 = std::uint8_t ; using u16 = std::uint16_t ; using u32 = std::uint32_t ; using u64 = std::uint64_t ; // Discouraged: Variable precision names // short using ushort = unsigned short; // int using uint = unsigned int; // long using ulong = unsigned long; using longlong = long long; using ulonglong = unsigned long long; using longdouble = long double; // Strongly discouraged, for compatibility/interop only using _schar = signed char; // normally use i8 instead using _uchar = unsigned char; // normally use u8 instead //----------------------------------------------------------------------- // // General helpers // //----------------------------------------------------------------------- // inline constexpr auto max(auto... values) { return std::max( { values... } ); } template <class T, class... Ts> inline constexpr auto is_any = std::disjunction_v<std::is_same<T, Ts>...>; //----------------------------------------------------------------------- // // String: A helper workaround for passing a string literal as a // template argument // //----------------------------------------------------------------------- // template<std::size_t N> struct String { constexpr String(const char (&str)[N]) { std::copy_n(str, N, value); } auto operator<=>(String const&) const = default; char value[N] = {}; }; //----------------------------------------------------------------------- // // contract_group // //----------------------------------------------------------------------- // #ifdef CPP2_USE_SOURCE_LOCATION #define CPP2_SOURCE_LOCATION_PARAM , std::source_location where #define CPP2_SOURCE_LOCATION_PARAM_WITH_DEFAULT , std::source_location where = std::source_location::current() #define CPP2_SOURCE_LOCATION_PARAM_SOLO std::source_location where #define CPP2_SOURCE_LOCATION_ARG , where #else #define CPP2_SOURCE_LOCATION_PARAM #define CPP2_SOURCE_LOCATION_PARAM_WITH_DEFAULT #define CPP2_SOURCE_LOCATION_PARAM_SOLO #define CPP2_SOURCE_LOCATION_ARG #endif // For C++23: make this std::string_view and drop the macro // Before C++23 std::string_view was not guaranteed to be trivially copyable, // and so in<T> will pass it by const& and really it should be by value #define CPP2_MESSAGE_PARAM char const* class contract_group { public: using handler = void (*)(CPP2_MESSAGE_PARAM msg CPP2_SOURCE_LOCATION_PARAM); constexpr contract_group (handler h = {}) : reporter(h) { } constexpr auto set_handler(handler h); constexpr auto get_handler() const -> handler { return reporter; } constexpr auto expects (bool b, CPP2_MESSAGE_PARAM msg = "" CPP2_SOURCE_LOCATION_PARAM_WITH_DEFAULT) -> void { if (!b) reporter(msg CPP2_SOURCE_LOCATION_ARG); } private: handler reporter; }; [[noreturn]] inline auto report_and_terminate(std::string_view group, CPP2_MESSAGE_PARAM msg = "" CPP2_SOURCE_LOCATION_PARAM_WITH_DEFAULT) noexcept -> void { std::cerr #ifdef CPP2_USE_SOURCE_LOCATION << where.file_name() << "(" << where.line() << ") " << where.function_name() << ": " #endif << group << " violation"; if (msg[0] != '\0') { std::cerr << ": " << msg; } std::cerr << "\n"; std::terminate(); } auto inline Default = contract_group( [](CPP2_MESSAGE_PARAM msg CPP2_SOURCE_LOCATION_PARAM)noexcept { report_and_terminate("Contract", msg CPP2_SOURCE_LOCATION_ARG); } ); auto inline Bounds = contract_group( [](CPP2_MESSAGE_PARAM msg CPP2_SOURCE_LOCATION_PARAM)noexcept { report_and_terminate("Bounds safety", msg CPP2_SOURCE_LOCATION_ARG); } ); auto inline Null = contract_group( [](CPP2_MESSAGE_PARAM msg CPP2_SOURCE_LOCATION_PARAM)noexcept { report_and_terminate("Null safety", msg CPP2_SOURCE_LOCATION_ARG); } ); auto inline Type = contract_group( [](CPP2_MESSAGE_PARAM msg CPP2_SOURCE_LOCATION_PARAM)noexcept { report_and_terminate("Type safety", msg CPP2_SOURCE_LOCATION_ARG); } ); auto inline Testing = contract_group( [](CPP2_MESSAGE_PARAM msg CPP2_SOURCE_LOCATION_PARAM)noexcept { report_and_terminate("Testing", msg CPP2_SOURCE_LOCATION_ARG); } ); constexpr auto contract_group::set_handler(handler h) { Default.expects(h); reporter = h; } // Null pointer deref checking // auto assert_not_null(auto&& p CPP2_SOURCE_LOCATION_PARAM_WITH_DEFAULT) -> decltype(auto) { // NOTE: This "!= T{}" test may or may not work for STL iterators. The standard // doesn't guarantee that using == and != will reliably report whether an // STL iterator has the default-constructed value. So use it only for raw *... if constexpr (std::is_pointer_v<CPP2_TYPEOF(p)>) { Null.expects(p != CPP2_TYPEOF(p){}, "dynamic null dereference attempt detected" CPP2_SOURCE_LOCATION_ARG); } return CPP2_FORWARD(p); } // Subscript bounds checking // auto assert_in_bounds_impl(auto&& x, auto&& arg CPP2_SOURCE_LOCATION_PARAM_WITH_DEFAULT) -> void requires (std::is_integral_v<CPP2_TYPEOF(arg)> && requires { std::size(x); std::ssize(x); x[arg]; std::begin(x) + 2; }) { Bounds.expects(0 <= arg && arg < [&]() -> auto { if constexpr (std::is_signed_v<CPP2_TYPEOF(arg)>) { return std::ssize(x); } else { return std::size(x); } }(), "out of bounds access attempt detected" CPP2_SOURCE_LOCATION_ARG); } auto assert_in_bounds_impl(auto&&, auto&& CPP2_SOURCE_LOCATION_PARAM_WITH_DEFAULT) -> void { } #define CPP2_ASSERT_IN_BOUNDS(x, arg) (cpp2::assert_in_bounds_impl((x),(arg)), (x)[(arg)]) //----------------------------------------------------------------------- // // Support wrappers that unblock using this file in environments that // disable EH or RTTI // // Note: This is not endorsing disabling those features, it's just // recognizing that disabling them is popular (e.g., games, WASM) // and so we should remove a potential adoption blocker... only a // few features in this file depend on EH or RTTI anyway, and // wouldn't be exercised in such an environment anyway so there // is no real net loss here // //----------------------------------------------------------------------- // [[noreturn]] auto Throw(auto&& x, [[maybe_unused]] char const* msg) -> void { #ifdef CPP2_NO_EXCEPTIONS Type.expects( !"exceptions are disabled with -fno-exceptions", msg ); std::terminate(); #else throw CPP2_FORWARD(x); #endif } inline auto Uncaught_exceptions() -> int { #ifdef CPP2_NO_EXCEPTIONS return 0; #else return std::uncaught_exceptions(); #endif } template<typename T> auto Dynamic_cast( [[maybe_unused]] auto&& x ) -> decltype(auto) { #ifdef CPP2_NO_RTTI Type.expects( !"'as' dynamic casting is disabled with -fno-rtti", // more likely to appear on console "'as' dynamic casting is disabled with -fno-rtti" // make message available to hooked handlers ); return nullptr; #else return dynamic_cast<T>(CPP2_FORWARD(x)); #endif } template<typename T> auto Typeid() -> decltype(auto) { #ifdef CPP2_NO_RTTI Type.expects( !"'any' dynamic casting is disabled with -fno-rtti", // more likely to appear on console "'any' dynamic casting is disabled with -fno-rtti" // make message available to hooked handlers ); #else return typeid(T); #endif } // We don't need typeid(expr) yet -- uncomment this if/when we need it //auto Typeid( [[maybe_unused]] auto&& x ) -> decltype(auto) { //#ifdef CPP2_NO_RTTI // Type.expects( // !"<write appropriate error message here>" // ); //#else // return typeid(CPP2_FORWARD(x)); //#endif //} //----------------------------------------------------------------------- // // Arena objects for std::allocators // // Note: cppfront translates "new" to "cpp2_new", so in Cpp2 code // these are invoked by simply "unique.new<T>" etc. // //----------------------------------------------------------------------- // struct { template<typename T> [[nodiscard]] auto cpp2_new(auto&& ...args) const -> std::unique_ptr<T> { // Prefer { } to ( ) so that initializing a vector<int> with // (10), (10, 20), and (10, 20, 30) is consistent if constexpr (requires { T{CPP2_FORWARD(args)...}; }) { // This is because apparently make_unique can't deal with list // initialization of aggregates, even after P0960 return std::unique_ptr<T>( new T{CPP2_FORWARD(args)...} ); } else { return std::make_unique<T>(CPP2_FORWARD(args)...); } } } inline unique; [[maybe_unused]] struct { template<typename T> [[nodiscard]] auto cpp2_new(auto&& ...args) const -> std::shared_ptr<T> { // Prefer { } to ( ) as noted for unique.new // // Note this does mean we don't get the make_shared optimization a lot // of the time -- we can restore that as soon as make_shared improves to // allow list initialization. But the make_shared optimization isn't a // huge deal anyway: it saves one allocation, but most of the cost of // shared_ptrs is copying them and the allocation cost saving is probably // outweighed by just a couple of shared_ptr copies; also, the make_shared // optimization has the potential downside of keeping the raw storage // alive longer when there are weak_ptrs. So, yes, we can and should // restore the make_shared optimization as soon as make_shared supports // list init, but I don't think it's all that important AFAIK if constexpr (requires { T{CPP2_FORWARD(args)...}; }) { // Why this calls 'unique.new': The workaround to use { } initialization // requires calling naked 'new' to allocate the object separately anyway, // so reuse the unique.new path that already does that (less code // duplication, plus encapsulate the naked 'new' in one place) return unique.cpp2_new<T>(CPP2_FORWARD(args)...); } else { return std::make_shared<T>(CPP2_FORWARD(args)...); } } } inline shared; template<typename T> [[nodiscard]] auto cpp2_new(auto&& ...args) -> std::unique_ptr<T> { return unique.cpp2_new<T>(CPP2_FORWARD(args)...); } //----------------------------------------------------------------------- // // in<T> For "in" parameter // //----------------------------------------------------------------------- // template<typename T> constexpr bool prefer_pass_by_value = sizeof(T) <= 2*sizeof(void*) && std::is_trivially_copy_constructible_v<T>; template<typename T> requires std::is_class_v<T> || std::is_union_v<T> || std::is_array_v<T> || std::is_function_v<T> constexpr bool prefer_pass_by_value<T> = false; template<typename T> requires (!std::is_void_v<T>) using in = std::conditional_t < prefer_pass_by_value<T>, T const, T const& >; //----------------------------------------------------------------------- // // Initialization: These are closely related... // // deferred_init<T> For deferred-initialized local object // // out<T> For out parameter // //----------------------------------------------------------------------- // template<typename T> class deferred_init { alignas(T) std::byte data[sizeof(T)]; bool init = false; auto t() -> T& { return *std::launder(reinterpret_cast<T*>(&data)); } template<typename U> friend class out; auto destroy() -> void { if (init) { t().~T(); } init = false; } public: deferred_init() noexcept { } ~deferred_init() noexcept { destroy(); } auto value() noexcept -> T& { Default.expects(init); return t(); } auto construct(auto&& ...args) -> void { Default.expects(!init); new (&data) T{CPP2_FORWARD(args)...}; init = true; } }; template<typename T> class out { // Not going to bother with std::variant here union { T* t; deferred_init<T>* dt; }; out<T>* ot = {}; bool has_t; // Each out in a chain contains its own uncaught_count ... int uncaught_count = Uncaught_exceptions(); // ... but all in a chain share the topmost called_construct_ bool called_construct_ = false; public: out(T* t_) noexcept : t{ t_}, has_t{true} { Default.expects( t); } out(deferred_init<T>* dt_) noexcept : dt{dt_}, has_t{false} { Default.expects(dt); } out(out<T>* ot_) noexcept : ot{ot_}, has_t{ot_->has_t} { Default.expects(ot); if (has_t) { t = ot->t; } else { dt = ot->dt; } } auto called_construct() -> bool& { if (ot) { return ot->called_construct(); } else { return called_construct_; } } // In the case of an exception, if the parameter was uninitialized // then leave it in the same state on exit (strong guarantee) ~out() { if (called_construct() && uncaught_count != Uncaught_exceptions()) { Default.expects(!has_t); dt->destroy(); called_construct() = false; } } auto construct(auto&& ...args) -> void { if (has_t || called_construct()) { if constexpr (requires { *t = T(CPP2_FORWARD(args)...); }) { Default.expects( t ); *t = T(CPP2_FORWARD(args)...); } else { Default.expects(false, "attempted to copy assign, but copy assignment is not available"); } } else { Default.expects( dt ); if (dt->init) { if constexpr (requires { *t = T(CPP2_FORWARD(args)...); }) { dt->value() = T(CPP2_FORWARD(args)...); } else { Default.expects(false, "attempted to copy assign, but copy assignment is not available"); } } else { dt->construct(CPP2_FORWARD(args)...); called_construct() = true; } } } auto value() noexcept -> T& { if (has_t) { Default.expects( t ); return *t; } else { Default.expects( dt ); return dt->value(); } } }; //----------------------------------------------------------------------- // // CPP2_UFCS: Variadic macro generating a variadic lamba, oh my... // //----------------------------------------------------------------------- // #if defined(_MSC_VER) && !defined(__clang_major__) #define CPP2_FORCE_INLINE __forceinline #define CPP2_FORCE_INLINE_LAMBDA [[msvc::forceinline]] #define CPP2_LAMBDA_NO_DISCARD #else #define CPP2_FORCE_INLINE __attribute__((always_inline)) #define CPP2_FORCE_INLINE_LAMBDA __attribute__((always_inline)) #if defined(__clang_major__) // Also check __cplusplus, only to satisfy Clang -pedantic-errors #if __cplusplus >= 202302L && (__clang_major__ > 13 || (__clang_major__ == 13 && __clang_minor__ >= 2)) #define CPP2_LAMBDA_NO_DISCARD [[nodiscard]] #else #define CPP2_LAMBDA_NO_DISCARD #endif #elif defined(__GNUC__) #if __GNUC__ >= 9 #define CPP2_LAMBDA_NO_DISCARD [[nodiscard]] #else #define CPP2_LAMBDA_NO_DISCARD #endif #if ((__GNUC__ * 100) + __GNUC_MINOR__) < 1003 // GCC 10.2 doesn't support this feature (10.3 is fine) #undef CPP2_FORCE_INLINE_LAMBDA #define CPP2_FORCE_INLINE_LAMBDA #endif #else #define CPP2_LAMBDA_NO_DISCARD #endif #endif // Note: [&] is because a nested UFCS might be viewed as trying to capture 'this' #define CPP2_UFCS(FUNCNAME,PARAM1,...) \ [&] CPP2_LAMBDA_NO_DISCARD (auto&& obj, auto&& ...params) CPP2_FORCE_INLINE_LAMBDA -> decltype(auto) { \ if constexpr (requires{ CPP2_FORWARD(obj).FUNCNAME(CPP2_FORWARD(params)...); }) { \ return CPP2_FORWARD(obj).FUNCNAME(CPP2_FORWARD(params)...); \ } else { \ return FUNCNAME(CPP2_FORWARD(obj), CPP2_FORWARD(params)...); \ } \ }(PARAM1, __VA_ARGS__) #define CPP2_UFCS_0(FUNCNAME,PARAM1) \ [&] CPP2_LAMBDA_NO_DISCARD (auto&& obj) CPP2_FORCE_INLINE_LAMBDA -> decltype(auto) { \ if constexpr (requires{ CPP2_FORWARD(obj).FUNCNAME(); }) { \ return CPP2_FORWARD(obj).FUNCNAME(); \ } else { \ return FUNCNAME(CPP2_FORWARD(obj)); \ } \ }(PARAM1) #define CPP2_UFCS_REMPARENS(...) __VA_ARGS__ #define CPP2_UFCS_TEMPLATE(FUNCNAME,TEMPARGS,PARAM1,...) \ [&] CPP2_LAMBDA_NO_DISCARD (auto&& obj, auto&& ...params) CPP2_FORCE_INLINE_LAMBDA -> decltype(auto) { \ if constexpr (requires{ CPP2_FORWARD(obj).template FUNCNAME CPP2_UFCS_REMPARENS TEMPARGS (CPP2_FORWARD(params)...); }) { \ return CPP2_FORWARD(obj).template FUNCNAME CPP2_UFCS_REMPARENS TEMPARGS (CPP2_FORWARD(params)...); \ } else { \ return FUNCNAME CPP2_UFCS_REMPARENS TEMPARGS (CPP2_FORWARD(obj), CPP2_FORWARD(params)...); \ } \ }(PARAM1, __VA_ARGS__) #define CPP2_UFCS_TEMPLATE_0(FUNCNAME,TEMPARGS,PARAM1) \ [&] CPP2_LAMBDA_NO_DISCARD (auto&& obj) CPP2_FORCE_INLINE_LAMBDA -> decltype(auto) { \ if constexpr (requires{ CPP2_FORWARD(obj).template FUNCNAME CPP2_UFCS_REMPARENS TEMPARGS (); }) { \ return CPP2_FORWARD(obj).template FUNCNAME CPP2_UFCS_REMPARENS TEMPARGS (); \ } else { \ return FUNCNAME CPP2_UFCS_REMPARENS TEMPARGS (CPP2_FORWARD(obj)); \ } \ }(PARAM1) // But for non-local lambdas [&] is not allowed #define CPP2_UFCS_NONLOCAL(FUNCNAME,PARAM1,...) \ [] CPP2_LAMBDA_NO_DISCARD (auto&& obj, auto&& ...params) CPP2_FORCE_INLINE_LAMBDA -> decltype(auto) { \ if constexpr (requires{ CPP2_FORWARD(obj).FUNCNAME(CPP2_FORWARD(params)...); }) { \ return CPP2_FORWARD(obj).FUNCNAME(CPP2_FORWARD(params)...); \ } else { \ return FUNCNAME(CPP2_FORWARD(obj), CPP2_FORWARD(params)...); \ } \ }(PARAM1, __VA_ARGS__) #define CPP2_UFCS_0_NONLOCAL(FUNCNAME,PARAM1) \ [] CPP2_LAMBDA_NO_DISCARD (auto&& obj) CPP2_FORCE_INLINE_LAMBDA -> decltype(auto) { \ if constexpr (requires{ CPP2_FORWARD(obj).FUNCNAME(); }) { \ return CPP2_FORWARD(obj).FUNCNAME(); \ } else { \ return FUNCNAME(CPP2_FORWARD(obj)); \ } \ }(PARAM1) #define CPP2_UFCS_TEMPLATE_NONLOCAL(FUNCNAME,TEMPARGS,PARAM1,...) \ [] CPP2_LAMBDA_NO_DISCARD (auto&& obj, auto&& ...params) CPP2_FORCE_INLINE_LAMBDA -> decltype(auto) { \ if constexpr (requires{ CPP2_FORWARD(obj).template FUNCNAME CPP2_UFCS_REMPARENS TEMPARGS (CPP2_FORWARD(params)...); }) { \ return CPP2_FORWARD(obj).template FUNCNAME CPP2_UFCS_REMPARENS TEMPARGS (CPP2_FORWARD(params)...); \ } else { \ return FUNCNAME CPP2_UFCS_REMPARENS TEMPARGS (CPP2_FORWARD(obj), CPP2_FORWARD(params)...); \ } \ }(PARAM1, __VA_ARGS__) #define CPP2_UFCS_TEMPLATE_0_NONLOCAL(FUNCNAME,TEMPARGS,PARAM1) \ [] CPP2_LAMBDA_NO_DISCARD (auto&& obj) CPP2_FORCE_INLINE_LAMBDA -> decltype(auto) { \ if constexpr (requires{ CPP2_FORWARD(obj).template FUNCNAME CPP2_UFCS_REMPARENS TEMPARGS (); }) { \ return CPP2_FORWARD(obj).template FUNCNAME CPP2_UFCS_REMPARENS TEMPARGS (); \ } else { \ return FUNCNAME CPP2_UFCS_REMPARENS TEMPARGS (CPP2_FORWARD(obj)); \ } \ }(PARAM1) //----------------------------------------------------------------------- // // to_string for string interpolation // //----------------------------------------------------------------------- // // For use when returning "no such thing", such as // when customizing "as" for std::variant struct nonesuch_ { auto operator==(auto const&) -> bool { return false; } }; constexpr inline nonesuch_ nonesuch; inline auto to_string(...) -> std::string { return "(customize me - no cpp2::to_string overload exists for this type)"; } inline auto to_string(nonesuch_) -> std::string { return "(invalid type)"; } inline auto to_string(std::same_as<std::any> auto const&) -> std::string { return "std::any"; } inline auto to_string(bool b) -> std::string { return b ? "true" : "false"; } template<typename T> inline auto to_string(T const& t) -> std::string requires requires { std::to_string(t); } { return std::to_string(t); } inline auto to_string(char const& t) -> std::string { return std::string{t}; } inline auto to_string(char const* s) -> std::string { return std::string{s}; } inline auto to_string(std::string const& s) -> std::string const& { return s; } template<typename T> inline auto to_string(T const& sv) -> std::string requires (std::is_convertible_v<T, std::string_view> && !std::is_convertible_v<T, const char*>) { return std::string{sv}; } template <typename... Ts> inline auto to_string(std::variant<Ts...> const& v) -> std::string; template < typename T, typename U> inline auto to_string(std::pair<T,U> const& p) -> std::string; template < typename... Ts> inline auto to_string(std::tuple<Ts...> const& t) -> std::string; template<typename T> inline auto to_string(std::optional<T> const& o) -> std::string { if (o.has_value()) { return cpp2::to_string(o.value()); } return "(empty)"; } template <typename... Ts> inline auto to_string(std::variant<Ts...> const& v) -> std::string { if (v.valueless_by_exception()) return "(empty)"; // Need to guard this with is_any otherwise the get_if is illegal if constexpr (is_any<std::monostate, Ts...>) if (std::get_if<std::monostate>(&v) != nullptr) return "(empty)"; return std::visit([](auto&& arg) -> std::string { return cpp2::to_string(arg); }, v); } template < typename T, typename U> inline auto to_string(std::pair<T,U> const& p) -> std::string { return "(" + cpp2::to_string(p.first) + ", " + cpp2::to_string(p.second) + ")"; } template < typename... Ts> inline auto to_string(std::tuple<Ts...> const& t) -> std::string { if constexpr (sizeof...(Ts) == 0) { return "()"; } else { std::string out = "(" + cpp2::to_string(std::get<0>(t)); std::apply([&out](auto&&, auto&&... args) { ((out += ", " + cpp2::to_string(args)), ...); }, t); out += ")"; return out; } } // MSVC supports it but doesn't define __cpp_lib_format until the ABI stablizes, but here // don't care about that, so consider it as supported since VS 2019 16.10 (_MSC_VER 1929) #if defined(__cpp_lib_format) || (defined(_MSC_VER) && _MSC_VER >= 1929) inline auto to_string(auto&& value, std::string_view fmt) -> std::string { return std::vformat(fmt, std::make_format_args(CPP2_FORWARD(value))); } #else inline auto to_string(auto&& value, std::string_view) -> std::string { // This Cpp1 implementation does not support <format>-ted string interpolation // so the best we can do is ignore the formatting request (degraded operation // seems better than a dynamic error message string or a hard error) return to_string(CPP2_FORWARD(value)); } #endif //----------------------------------------------------------------------- // // is and as // //----------------------------------------------------------------------- // //------------------------------------------------------------------------------------------------------------- // Built-in is // // For designating "holds no value" -- used only with is, not as // TODO: Does this really warrant a new synonym? Perhaps "is void" is enough using empty = void; // Templates // template <template <typename...> class C, typename... Ts> constexpr auto is(C< Ts...> const& ) -> bool { return true; } #if defined(_MSC_VER) template <template <typename, typename...> class C, typename T> constexpr auto is( T const& ) -> bool { return false; } #else template <template <typename...> class C, typename T> constexpr auto is( T const& ) -> bool { return false; } #endif template <template <typename,auto> class C, typename T, auto V> constexpr auto is( C<T, V> const& ) -> bool { return true; } template <template <typename,auto> class C, typename T> constexpr auto is( T const& ) -> bool { return false; } // Types // template< typename C, typename X > auto is( X const& ) -> bool { return false; } template< typename C, typename X > requires std::is_same_v<C, X> auto is( X const& ) -> bool { return true; } template< typename C, typename X > requires (std::is_base_of_v<C, X> && !std::is_same_v<C,X>) auto is( X const& ) -> bool { return true; } template< typename C, typename X > requires ( ( std::is_base_of_v<X, C> || ( std::is_polymorphic_v<C> && std::is_polymorphic_v<X>) ) && !std::is_same_v<C,X>) auto is( X const& x ) -> bool { return Dynamic_cast<C const*>(&x) != nullptr; } template< typename C, typename X > requires ( ( std::is_base_of_v<X, C> || ( std::is_polymorphic_v<C> && std::is_polymorphic_v<X>) ) && !std::is_same_v<C,X>) auto is( X const* x ) -> bool { return Dynamic_cast<C const*>(x) != nullptr; } template< typename C, typename X > requires (requires (X x) { *x; X(); } && std::is_same_v<C, empty>) auto is( X const& x ) -> bool { return x == X(); } // Values // inline constexpr auto is( auto const& x, auto&& value ) -> bool { // Value with customized operator_is case if constexpr (requires{ x.op_is(value); }) { return x.op_is(value); } // Predicate case else if constexpr (requires{ bool{ value(x) }; }) { return value(x); } else if constexpr (std::is_function_v<decltype(value)> || requires{ &value.operator(); }) { return false; } // Value equality case else if constexpr (requires{ bool{x == value}; }) { return x == value; } return false; } //------------------------------------------------------------------------------------------------------------- // Built-in as // // The 'as' cast functions are <To, From> so use that order here // If it's confusing, we can switch this to <From, To> template< typename To, typename From > inline constexpr auto is_narrowing_v = // [dcl.init.list] 7.1 (std::is_floating_point_v<From> && std::is_integral_v<To>) || // [dcl.init.list] 7.2 (std::is_floating_point_v<From> && std::is_floating_point_v<To> && sizeof(From) > sizeof(To)) || // [dcl.init.list] 7.3 (std::is_integral_v<From> && std::is_floating_point_v<To>) || (std::is_enum_v<From> && std::is_floating_point_v<To>) || // [dcl.init.list] 7.4 (std::is_integral_v<From> && std::is_integral_v<To> && sizeof(From) > sizeof(To)) || (std::is_enum_v<From> && std::is_integral_v<To> && sizeof(From) > sizeof(To)) || // [dcl.init.list] 7.5 (std::is_pointer_v<From> && std::is_same_v<To, bool>); template <typename... Ts> inline constexpr auto program_violates_type_safety_guarantee = sizeof...(Ts) < 0; // For literals we can check for safe 'narrowing' at a compile time (e.g., 1 as std::size_t) template< typename C, auto x > inline constexpr bool is_castable_v = std::is_integral_v<C> && std::is_integral_v<CPP2_TYPEOF(x)> && !(static_cast<CPP2_TYPEOF(x)>(static_cast<C>(x)) != x || ( (std::is_signed_v<C> != std::is_signed_v<CPP2_TYPEOF(x)>) && ((static_cast<C>(x) < C{}) != (x < CPP2_TYPEOF(x){})) ) ); // As // template< typename C > auto as(auto const&) -> auto { return nonesuch; } template< typename C, auto x > requires (std::is_arithmetic_v<C> && std::is_arithmetic_v<CPP2_TYPEOF(x)>) inline constexpr auto as() -> auto { if constexpr ( is_castable_v<C, x> ) { return static_cast<C>(x); } else { return nonesuch; } } template< typename C > inline constexpr auto as(auto const& x) -> auto requires ( std::is_floating_point_v<C> && std::is_floating_point_v<CPP2_TYPEOF(x)> && sizeof(CPP2_TYPEOF(x)) > sizeof(C) ) { return nonesuch; } // Signed/unsigned conversions to a not-smaller type are handled as a precondition, // and trying to cast from a value that is in the half of the value space that isn't // representable in the target type C is flagged as a Type safety contract violation template< typename C > inline constexpr auto as(auto const& x CPP2_SOURCE_LOCATION_PARAM_WITH_DEFAULT) -> auto requires ( std::is_integral_v<C> && std::is_integral_v<CPP2_TYPEOF(x)> && std::is_signed_v<CPP2_TYPEOF(x)> != std::is_signed_v<C> && sizeof(CPP2_TYPEOF(x)) <= sizeof(C) ) { const C c = static_cast<C>(x); Type.expects( // precondition check: must be round-trippable => not lossy static_cast<CPP2_TYPEOF(x)>(c) == x && (c < C{}) == (x < CPP2_TYPEOF(x){}), "dynamic lossy narrowing conversion attempt detected" CPP2_SOURCE_LOCATION_ARG ); return c; } template< typename C, typename X > requires std::is_same_v<C, X> auto as( X const& x ) -> decltype(auto) { return x; } template< typename C, typename X > requires std::is_same_v<C, X> auto as( X& x ) -> decltype(auto) { return x; } template< typename C, typename X > auto as(X const& x) -> C requires (std::is_same_v<C, std::string> && std::is_integral_v<X>) { return cpp2::to_string(x); } template< typename C, typename X > auto as( X const& x ) -> auto requires (!std::is_same_v<C, X> && !std::is_base_of_v<C, X> && requires { C{x}; } && !(std::is_same_v<C, std::string> && std::is_integral_v<X>) // exclude above case ) { // Experiment: Recognize the nested `::value_type` pattern for some dynamic library types // like std::optional, and try to prevent accidental narrowing conversions even when // those types themselves don't defend against them if constexpr( requires { requires std::is_convertible_v<X, typename C::value_type>; } ) { if constexpr( is_narrowing_v<typename C::value_type, X>) { return nonesuch; } } return C{x}; } template< typename C, typename X > requires (std::is_base_of_v<C, X> && !std::is_same_v<C, X>) auto as( X& x ) -> C& { return x; } template< typename C, typename X > requires (std::is_base_of_v<C, X> && !std::is_same_v<C, X>) auto as( X const& x ) -> C const& { return x; } template< typename C, typename X > requires (std::is_base_of_v<X, C> && !std::is_same_v<C,X>) auto as( X& x ) -> C& { return Dynamic_cast<C&>(x); } template< typename C, typename X > requires (std::is_base_of_v<X, C> && !std::is_same_v<C,X>) auto as( X const& x ) -> C const& { return Dynamic_cast<C const&>(x); } template< typename C, typename X > requires ( std::is_pointer_v<C> && std::is_pointer_v<X> && std::is_base_of_v<CPP2_TYPEOF(*std::declval<X>()), CPP2_TYPEOF(*std::declval<C>())> && !std::is_same_v<C, X> ) auto as( X x ) -> C { return Dynamic_cast<C>(x); } //------------------------------------------------------------------------------------------------------------- // std::variant is and as // // Common internal helper // template<std::size_t I, typename... Ts> constexpr auto operator_as( std::variant<Ts...> && x ) -> decltype(auto) { if constexpr (I < std::variant_size_v<std::variant<Ts...>>) { return std::get<I>( x ); } else { return nonesuch; } } template<std::size_t I, typename... Ts> constexpr auto operator_as( std::variant<Ts...> & x ) -> decltype(auto) { if constexpr (I < std::variant_size_v<std::variant<Ts...>>) { return std::get<I>( x ); } else { return nonesuch; } } template<std::size_t I, typename... Ts> constexpr auto operator_as( std::variant<Ts...> const& x ) -> decltype(auto) { if constexpr (I < std::variant_size_v<std::variant<Ts...>>) { return std::get<I>( x ); } else { return nonesuch; } } // is Type // template<typename... Ts> constexpr auto operator_is( std::variant<Ts...> const& x ) { return x.index(); } template<typename T, typename... Ts> auto is( std::variant<Ts...> const& x ); // is Value // template<typename... Ts> constexpr auto is( std::variant<Ts...> const& x, auto&& value ) -> bool { // Predicate case if constexpr (requires{ bool{ value(operator_as< 0>(x)) }; }) { if (x.index() == 0) return value(operator_as< 0>(x)); } else if constexpr (requires{ bool{ value(operator_as< 1>(x)) }; }) { if (x.index() == 1) return value(operator_as< 1>(x)); } else if constexpr (requires{ bool{ value(operator_as< 2>(x)) }; }) { if (x.index() == 2) return value(operator_as< 2>(x)); } else if constexpr (requires{ bool{ value(operator_as< 3>(x)) }; }) { if (x.index() == 3) return value(operator_as< 3>(x)); } else if constexpr (requires{ bool{ value(operator_as< 4>(x)) }; }) { if (x.index() == 4) return value(operator_as< 4>(x)); } else if constexpr (requires{ bool{ value(operator_as< 5>(x)) }; }) { if (x.index() == 5) return value(operator_as< 5>(x)); } else if constexpr (requires{ bool{ value(operator_as< 6>(x)) }; }) { if (x.index() == 6) return value(operator_as< 6>(x)); } else if constexpr (requires{ bool{ value(operator_as< 7>(x)) }; }) { if (x.index() == 7) return value(operator_as< 7>(x)); } else if constexpr (requires{ bool{ value(operator_as< 8>(x)) }; }) { if (x.index() == 8) return value(operator_as< 8>(x)); } else if constexpr (requires{ bool{ value(operator_as< 9>(x)) }; }) { if (x.index() == 9) return value(operator_as< 9>(x)); } else if constexpr (requires{ bool{ value(operator_as<10>(x)) }; }) { if (x.index() == 10) return value(operator_as<10>(x)); } else if constexpr (requires{ bool{ value(operator_as<11>(x)) }; }) { if (x.index() == 11) return value(operator_as<11>(x)); } else if constexpr (requires{ bool{ value(operator_as<12>(x)) }; }) { if (x.index() == 12) return value(operator_as<12>(x)); } else if constexpr (requires{ bool{ value(operator_as<13>(x)) }; }) { if (x.index() == 13) return value(operator_as<13>(x)); } else if constexpr (requires{ bool{ value(operator_as<14>(x)) }; }) { if (x.index() == 14) return value(operator_as<14>(x)); } else if constexpr (requires{ bool{ value(operator_as<15>(x)) }; }) { if (x.index() == 15) return value(operator_as<15>(x)); } else if constexpr (requires{ bool{ value(operator_as<16>(x)) }; }) { if (x.index() == 16) return value(operator_as<16>(x)); } else if constexpr (requires{ bool{ value(operator_as<17>(x)) }; }) { if (x.index() == 17) return value(operator_as<17>(x)); } else if constexpr (requires{ bool{ value(operator_as<18>(x)) }; }) { if (x.index() == 18) return value(operator_as<18>(x)); } else if constexpr (requires{ bool{ value(operator_as<19>(x)) }; }) { if (x.index() == 19) return value(operator_as<19>(x)); } else if constexpr (std::is_function_v<decltype(value)> || requires{ &value.operator(); }) { return false; } // Value case else { if constexpr (requires{ bool{ operator_as< 0>(x) == value }; }) { if (x.index() == 0) return operator_as< 0>(x) == value; } if constexpr (requires{ bool{ operator_as< 1>(x) == value }; }) { if (x.index() == 1) return operator_as< 1>(x) == value; } if constexpr (requires{ bool{ operator_as< 2>(x) == value }; }) { if (x.index() == 2) return operator_as< 2>(x) == value; } if constexpr (requires{ bool{ operator_as< 3>(x) == value }; }) { if (x.index() == 3) return operator_as< 3>(x) == value; } if constexpr (requires{ bool{ operator_as< 4>(x) == value }; }) { if (x.index() == 4) return operator_as< 4>(x) == value; } if constexpr (requires{ bool{ operator_as< 5>(x) == value }; }) { if (x.index() == 5) return operator_as< 5>(x) == value; } if constexpr (requires{ bool{ operator_as< 6>(x) == value }; }) { if (x.index() == 6) return operator_as< 6>(x) == value; } if constexpr (requires{ bool{ operator_as< 7>(x) == value }; }) { if (x.index() == 7) return operator_as< 7>(x) == value; } if constexpr (requires{ bool{ operator_as< 8>(x) == value }; }) { if (x.index() == 8) return operator_as< 8>(x) == value; } if constexpr (requires{ bool{ operator_as< 9>(x) == value }; }) { if (x.index() == 9) return operator_as< 9>(x) == value; } if constexpr (requires{ bool{ operator_as<10>(x) == value }; }) { if (x.index() == 10) return operator_as<10>(x) == value; } if constexpr (requires{ bool{ operator_as<11>(x) == value }; }) { if (x.index() == 11) return operator_as<11>(x) == value; } if constexpr (requires{ bool{ operator_as<12>(x) == value }; }) { if (x.index() == 12) return operator_as<12>(x) == value; } if constexpr (requires{ bool{ operator_as<13>(x) == value }; }) { if (x.index() == 13) return operator_as<13>(x) == value; } if constexpr (requires{ bool{ operator_as<14>(x) == value }; }) { if (x.index() == 14) return operator_as<14>(x) == value; } if constexpr (requires{ bool{ operator_as<15>(x) == value }; }) { if (x.index() == 15) return operator_as<15>(x) == value; } if constexpr (requires{ bool{ operator_as<16>(x) == value }; }) { if (x.index() == 16) return operator_as<16>(x) == value; } if constexpr (requires{ bool{ operator_as<17>(x) == value }; }) { if (x.index() == 17) return operator_as<17>(x) == value; } if constexpr (requires{ bool{ operator_as<18>(x) == value }; }) { if (x.index() == 18) return operator_as<18>(x) == value; } if constexpr (requires{ bool{ operator_as<19>(x) == value }; }) { if (x.index() == 19) return operator_as<19>(x) == value; } } return false; } // as // template<typename T, typename... Ts> auto is( std::variant<Ts...> const& x ) { if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 0>(x)), T >) { if (x.index() == 0) return true; } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 1>(x)), T >) { if (x.index() == 1) return true; } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 2>(x)), T >) { if (x.index() == 2) return true; } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 3>(x)), T >) { if (x.index() == 3) return true; } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 4>(x)), T >) { if (x.index() == 4) return true; } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 5>(x)), T >) { if (x.index() == 5) return true; } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 6>(x)), T >) { if (x.index() == 6) return true; } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 7>(x)), T >) { if (x.index() == 7) return true; } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 8>(x)), T >) { if (x.index() == 8) return true; } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 9>(x)), T >) { if (x.index() == 9) return true; } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<10>(x)), T >) { if (x.index() == 10) return true; } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<11>(x)), T >) { if (x.index() == 11) return true; } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<12>(x)), T >) { if (x.index() == 12) return true; } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<13>(x)), T >) { if (x.index() == 13) return true; } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<14>(x)), T >) { if (x.index() == 14) return true; } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<15>(x)), T >) { if (x.index() == 15) return true; } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<16>(x)), T >) { if (x.index() == 16) return true; } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<17>(x)), T >) { if (x.index() == 17) return true; } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<18>(x)), T >) { if (x.index() == 18) return true; } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<19>(x)), T >) { if (x.index() == 19) return true; } if constexpr (std::is_same_v< T, empty > ) { if (x.valueless_by_exception()) return true; // Need to guard this with is_any otherwise the get_if is illegal if constexpr (is_any<std::monostate, Ts...>) return std::get_if<std::monostate>(&x) != nullptr; } return false; } template<typename T, typename... Ts> auto as( std::variant<Ts...> && x ) -> decltype(auto) { if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 0>(x)), T >) { if (x.index() == 0) return operator_as<0>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 1>(x)), T >) { if (x.index() == 1) return operator_as<1>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 2>(x)), T >) { if (x.index() == 2) return operator_as<2>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 3>(x)), T >) { if (x.index() == 3) return operator_as<3>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 4>(x)), T >) { if (x.index() == 4) return operator_as<4>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 5>(x)), T >) { if (x.index() == 5) return operator_as<5>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 6>(x)), T >) { if (x.index() == 6) return operator_as<6>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 7>(x)), T >) { if (x.index() == 7) return operator_as<7>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 8>(x)), T >) { if (x.index() == 8) return operator_as<8>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 9>(x)), T >) { if (x.index() == 9) return operator_as<9>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<10>(x)), T >) { if (x.index() == 10) return operator_as<10>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<11>(x)), T >) { if (x.index() == 11) return operator_as<11>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<12>(x)), T >) { if (x.index() == 12) return operator_as<12>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<13>(x)), T >) { if (x.index() == 13) return operator_as<13>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<14>(x)), T >) { if (x.index() == 14) return operator_as<14>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<15>(x)), T >) { if (x.index() == 15) return operator_as<15>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<16>(x)), T >) { if (x.index() == 16) return operator_as<16>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<17>(x)), T >) { if (x.index() == 17) return operator_as<17>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<18>(x)), T >) { if (x.index() == 18) return operator_as<18>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<19>(x)), T >) { if (x.index() == 19) return operator_as<19>(x); } Throw( std::bad_variant_access(), "'as' cast failed for 'variant'"); } template<typename T, typename... Ts> auto as( std::variant<Ts...> & x ) -> decltype(auto) { if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 0>(x)), T >) { if (x.index() == 0) return operator_as<0>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 1>(x)), T >) { if (x.index() == 1) return operator_as<1>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 2>(x)), T >) { if (x.index() == 2) return operator_as<2>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 3>(x)), T >) { if (x.index() == 3) return operator_as<3>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 4>(x)), T >) { if (x.index() == 4) return operator_as<4>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 5>(x)), T >) { if (x.index() == 5) return operator_as<5>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 6>(x)), T >) { if (x.index() == 6) return operator_as<6>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 7>(x)), T >) { if (x.index() == 7) return operator_as<7>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 8>(x)), T >) { if (x.index() == 8) return operator_as<8>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 9>(x)), T >) { if (x.index() == 9) return operator_as<9>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<10>(x)), T >) { if (x.index() == 10) return operator_as<10>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<11>(x)), T >) { if (x.index() == 11) return operator_as<11>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<12>(x)), T >) { if (x.index() == 12) return operator_as<12>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<13>(x)), T >) { if (x.index() == 13) return operator_as<13>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<14>(x)), T >) { if (x.index() == 14) return operator_as<14>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<15>(x)), T >) { if (x.index() == 15) return operator_as<15>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<16>(x)), T >) { if (x.index() == 16) return operator_as<16>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<17>(x)), T >) { if (x.index() == 17) return operator_as<17>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<18>(x)), T >) { if (x.index() == 18) return operator_as<18>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<19>(x)), T >) { if (x.index() == 19) return operator_as<19>(x); } Throw( std::bad_variant_access(), "'as' cast failed for 'variant'"); } template<typename T, typename... Ts> auto as( std::variant<Ts...> const& x ) -> decltype(auto) { if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 0>(x)), T >) { if (x.index() == 0) return operator_as<0>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 1>(x)), T >) { if (x.index() == 1) return operator_as<1>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 2>(x)), T >) { if (x.index() == 2) return operator_as<2>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 3>(x)), T >) { if (x.index() == 3) return operator_as<3>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 4>(x)), T >) { if (x.index() == 4) return operator_as<4>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 5>(x)), T >) { if (x.index() == 5) return operator_as<5>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 6>(x)), T >) { if (x.index() == 6) return operator_as<6>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 7>(x)), T >) { if (x.index() == 7) return operator_as<7>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 8>(x)), T >) { if (x.index() == 8) return operator_as<8>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as< 9>(x)), T >) { if (x.index() == 9) return operator_as<9>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<10>(x)), T >) { if (x.index() == 10) return operator_as<10>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<11>(x)), T >) { if (x.index() == 11) return operator_as<11>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<12>(x)), T >) { if (x.index() == 12) return operator_as<12>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<13>(x)), T >) { if (x.index() == 13) return operator_as<13>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<14>(x)), T >) { if (x.index() == 14) return operator_as<14>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<15>(x)), T >) { if (x.index() == 15) return operator_as<15>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<16>(x)), T >) { if (x.index() == 16) return operator_as<16>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<17>(x)), T >) { if (x.index() == 17) return operator_as<17>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<18>(x)), T >) { if (x.index() == 18) return operator_as<18>(x); } if constexpr (std::is_same_v< CPP2_TYPEOF(operator_as<19>(x)), T >) { if (x.index() == 19) return operator_as<19>(x); } Throw( std::bad_variant_access(), "'as' cast failed for 'variant'"); } //------------------------------------------------------------------------------------------------------------- // std::any is and as // // is Type // template<typename T, typename X> requires (std::is_same_v<X,std::any> && !std::is_same_v<T,std::any> && !std::is_same_v<T,empty>) constexpr auto is( X const& x ) -> bool { return x.type() == Typeid<T>(); } template<typename T, typename X> requires (std::is_same_v<X,std::any> && std::is_same_v<T,empty>) constexpr auto is( X const& x ) -> bool { return !x.has_value(); } // is Value // inline constexpr auto is( std::any const& x, auto&& value ) -> bool { // Predicate case if constexpr (requires{ bool{ value(x) }; }) { return value(x); } else if constexpr (std::is_function_v<decltype(value)> || requires{ &value.operator(); }) { return false; } // Value case else if constexpr (requires{ bool{ *std::any_cast<CPP2_TYPEOF(value)>(&x) == value }; }) { auto pvalue = std::any_cast<CPP2_TYPEOF(value)>(&x); return pvalue && *pvalue == value; } // else return false; } // as // template<typename T, typename X> requires (!std::is_reference_v<T> && std::is_same_v<X,std::any> && !std::is_same_v<T,std::any>) constexpr auto as( X const& x ) -> T { return std::any_cast<T>( x ); } //------------------------------------------------------------------------------------------------------------- // std::optional is and as // // is Type // template<typename T, typename X> requires std::is_same_v<X,std::optional<T>> constexpr auto is( X const& x ) -> bool { return x.has_value(); } template<typename T, typename U> requires std::is_same_v<T,empty> constexpr auto is( std::optional<U> const& x ) -> bool { return !x.has_value(); } // is Value // template<typename T> constexpr auto is( std::optional<T> const& x, auto&& value ) -> bool { // Predicate case if constexpr (requires{ bool{ value(x) }; }) { return value(x); } else if constexpr (std::is_function_v<decltype(value)> || requires{ &value.operator(); }) { return false; } // Value case else if constexpr (requires{ bool{ x.value() == value }; }) { return x.has_value() && x.value() == value; } return false; } // as // template<typename T, typename X> requires std::is_same_v<X,std::optional<T>> constexpr auto as( X const& x ) -> decltype(auto) { return x.value(); } //----------------------------------------------------------------------- // // A variation of GSL's final_action_success / finally // // finally ensures something is run at the end of a scope always // // finally_success ensures something is run at the end of a scope // if no exception is thrown // // finally_presuccess ensures a group of add'd operations are run // immediately before (not after) the return if no exception is // thrown - right now this is used only for postconditions, so // they can inspect named return values before they're moved from // //----------------------------------------------------------------------- // template <class F> class finally_success { public: explicit finally_success(const F& ff) noexcept : f{ff} { } explicit finally_success(F&& ff) noexcept : f{std::move(ff)} { } ~finally_success() noexcept { if (invoke && ecount == std::uncaught_exceptions()) { f(); } } finally_success(finally_success&& that) noexcept : f(std::move(that.f)), invoke(std::exchange(that.invoke, false)) { } finally_success(finally_success const&) = delete; void operator= (finally_success const&) = delete; void operator= (finally_success&&) = delete; private: F f; int ecount = std::uncaught_exceptions(); bool invoke = true; }; template <class F> class finally { public: explicit finally(const F& ff) noexcept : f{ff} { } explicit finally(F&& ff) noexcept : f{std::move(ff)} { } ~finally() noexcept { f(); } finally(finally&& that) noexcept : f(std::move(that.f)), invoke(std::exchange(that.invoke, false)) { } finally (finally const&) = delete; void operator=(finally const&) = delete; void operator=(finally&&) = delete; private: F f; bool invoke = true; }; class finally_presuccess { public: finally_presuccess() = default; auto add(const auto& f) { fs.push_back(f); } // In compiled Cpp2 code, this function will be called // immediately before 'return' (both explicit and implicit) auto run() { if (invoke && ecount == std::uncaught_exceptions()) { for (auto const& f : fs) { f(); } } invoke = false; } ~finally_presuccess() noexcept { run(); } finally_presuccess(finally_presuccess const&) = delete; void operator= (finally_presuccess const&) = delete; void operator= (finally_presuccess &&) = delete; private: std::vector<std::function<void()>> fs; int ecount = std::uncaught_exceptions(); bool invoke = true; }; //----------------------------------------------------------------------- // // args: see main() arguments as vector<string_view> // //----------------------------------------------------------------------- // struct args_t : std::vector<std::string_view> { args_t(int c, char** v) : vector{static_cast<std::size_t>(c)}, argc{c}, argv{v} {} int argc = 0; char** argv = nullptr; }; inline auto make_args(int argc, char** argv) -> args_t { auto ret = args_t{argc, argv}; auto args = std::span(argv, static_cast<std::size_t>(argc)); std::copy( args.begin(), args.end(), ret.data()); return ret; } //----------------------------------------------------------------------- // // alien_memory: memory typed as T but that is outside C++ and that the // compiler may not assume it knows anything at all about // //----------------------------------------------------------------------- // template<typename T> using alien_memory = T volatile; //----------------------------------------------------------------------- // // An implementation of GSL's narrow_cast with a clearly 'unsafe' name // //----------------------------------------------------------------------- // template <typename C, typename X> constexpr auto unsafe_narrow( X&& x ) noexcept -> decltype(auto) { return static_cast<C>(CPP2_FORWARD(x)); } //----------------------------------------------------------------------- // // has_flags: query whether a flag_enum value has all flags in 'flags' set // // flags set of flags to check // // Returns a function object that takes a 'value' of the same type as // 'flags', and evaluates to true if and only if 'value' has set all of // the bits set in 'flags' // //----------------------------------------------------------------------- // template <typename T> auto has_flags(T flags) { return [=](T value) { return (value & flags) == flags; }; } //----------------------------------------------------------------------- // // Speculative: RAII wrapping for the C standard library // // As part of embracing compatibility while also reducing what we have to // teach and learn about C++ (which includes the C standard library), I // was curious to see if we can improve use of the C standard library // from Cpp2 code... UFCS is a part of that, and then RAII destructors is // another that goes hand in hand with that, hence this section... // but see caveat note at the end. // //----------------------------------------------------------------------- // template<typename T, typename D> class c_raii { T t; D dtor; public: c_raii( T t_, D d ) : t{ t_ } , dtor{ d } { } ~c_raii() { dtor(t); } operator T&() { return t; } c_raii(c_raii const&) = delete; auto operator=(c_raii const&) = delete; }; inline auto fopen( const char* filename, const char* mode ) { // Suppress annoying deprecation warning about fopen #ifdef _MSC_VER #pragma warning( push ) #pragma warning( disable : 4996 ) #endif auto x = std::fopen(filename, mode); #ifdef _MSC_VER #pragma warning( pop ) #endif if (!x) { Throw( std::make_error_condition(std::errc::no_such_file_or_directory), "'fopen' attempt failed"); } return c_raii( x, &std::fclose ); } // Caveat: There's little else in the C stdlib that allocates a resource... // // malloc is already wrapped like this via std::unique_ptr, which // typically uses malloc or gets memory from the same pool // thrd_create std::jthread is better // // ... is that it? I don't think it's useful to provide a c_raii just for fopen, // but perhaps c_raii may be useful for bringing forward third-party C code too, // with cpp2::fopen as a starting example. //----------------------------------------------------------------------- // // Signed/unsigned comparison checks // //----------------------------------------------------------------------- // template<typename T, typename U> CPP2_FORCE_INLINE constexpr auto cmp_mixed_signedness_check() -> void { if constexpr ( std::is_same_v<T, bool> || std::is_same_v<U, bool> ) { static_assert( program_violates_type_safety_guarantee<T, U>, "comparing bool values using < <= >= > is unsafe and not allowed - are you missing parentheses?"); } else if constexpr ( std::is_integral_v<T> && std::is_integral_v<U> && std::is_signed_v<T> != std::is_signed_v<U> ) { // Note: It's tempting here to "just call std::cmp_*() instead" // which does signed/unsigned relational comparison correctly // for negative values, and so silently "fix that for you." But // doing that has security pitfalls for the reasons described at // https://github.com/hsutter/cppfront/issues/220, so this // static_assert to reject the comparison is the right way to go. static_assert( program_violates_type_safety_guarantee<T, U>, "mixed signed/unsigned comparison is unsafe - prefer using .ssize() instead of .size(), consider using std::cmp_less instead, or consider explicitly casting one of the values to change signedness by using 'as' or 'cpp2::unsafe_narrow'" ); } } CPP2_FORCE_INLINE constexpr auto cmp_less(auto&& t, auto&& u) -> decltype(auto) requires requires {CPP2_FORWARD(t) < CPP2_FORWARD(u);} { cmp_mixed_signedness_check<CPP2_TYPEOF(t), CPP2_TYPEOF(u)>(); return CPP2_FORWARD(t) < CPP2_FORWARD(u); } CPP2_FORCE_INLINE constexpr auto cmp_less(auto&& t, auto&& u) -> decltype(auto) { static_assert( program_violates_type_safety_guarantee<decltype(t), decltype(u)>, "attempted to compare '<' for incompatible types" ); return nonesuch; } CPP2_FORCE_INLINE constexpr auto cmp_less_eq(auto&& t, auto&& u) -> decltype(auto) requires requires {CPP2_FORWARD(t) <= CPP2_FORWARD(u);} { cmp_mixed_signedness_check<CPP2_TYPEOF(t), CPP2_TYPEOF(u)>(); return CPP2_FORWARD(t) <= CPP2_FORWARD(u); } CPP2_FORCE_INLINE constexpr auto cmp_less_eq(auto&& t, auto&& u) -> decltype(auto) { static_assert( program_violates_type_safety_guarantee<decltype(t), decltype(u)>, "attempted to compare '<=' for incompatible types" ); return nonesuch; } CPP2_FORCE_INLINE constexpr auto cmp_greater(auto&& t, auto&& u) -> decltype(auto) requires requires {CPP2_FORWARD(t) > CPP2_FORWARD(u);} { cmp_mixed_signedness_check<CPP2_TYPEOF(t), CPP2_TYPEOF(u)>(); return CPP2_FORWARD(t) > CPP2_FORWARD(u); } CPP2_FORCE_INLINE constexpr auto cmp_greater(auto&& t, auto&& u) -> decltype(auto) { static_assert( program_violates_type_safety_guarantee<decltype(t), decltype(u)>, "attempted to compare '>' for incompatible types" ); return nonesuch; } CPP2_FORCE_INLINE constexpr auto cmp_greater_eq(auto&& t, auto&& u) -> decltype(auto) requires requires {CPP2_FORWARD(t) >= CPP2_FORWARD(u);} { cmp_mixed_signedness_check<CPP2_TYPEOF(t), CPP2_TYPEOF(u)>(); return CPP2_FORWARD(t) >= CPP2_FORWARD(u); } CPP2_FORCE_INLINE constexpr auto cmp_greater_eq(auto&& t, auto&& u) -> decltype(auto) { static_assert( program_violates_type_safety_guarantee<decltype(t), decltype(u)>, "attempted to compare '>=' for incompatible types" ); return nonesuch; } //----------------------------------------------------------------------- // // A static-asserting "as" for better diagnostics than raw 'nonesuch' // // Note for the future: This needs go after all 'as', which is fine for // the ones in this file but will have problems with further user- // defined 'as' customizations. One solution would be to make the main // 'as' be a class template, and have all customizations be actual // specializations... that way name lookup should find the primary // template first and then see later specializations. Or we could just // remove this and live with the 'nonesuch' error messages. Either way, // we don't need anything more right now, this solution is fine to // unblock general progress // //----------------------------------------------------------------------- // template< typename C > inline constexpr auto as_( auto&& x ) -> decltype(auto) { if constexpr (is_narrowing_v<C, CPP2_TYPEOF(x)>) { static_assert( program_violates_type_safety_guarantee<C, CPP2_TYPEOF(x)>, "'as' does not allow unsafe narrowing conversions - if you're sure you want this, use `unsafe_narrow<T>()` to force the conversion" ); } else if constexpr( std::is_same_v< CPP2_TYPEOF(as<C>(CPP2_FORWARD(x))), nonesuch_ > ) { static_assert( program_violates_type_safety_guarantee<C, CPP2_TYPEOF(x)>, "No safe 'as' cast available - please check your cast" ); } // else return as<C>(CPP2_FORWARD(x)); } template< typename C, auto x > inline constexpr auto as_() -> decltype(auto) { if constexpr (requires { as<C, x>(); }) { if constexpr( std::is_same_v< CPP2_TYPEOF((as<C, x>())), nonesuch_ > ) { static_assert( program_violates_type_safety_guarantee<C, CPP2_TYPEOF(x)>, "Literal cannot be narrowed using 'as' - if you're sure you want this, use 'unsafe_narrow<T>()' to force the conversion" ); } } else { static_assert( program_violates_type_safety_guarantee<C, CPP2_TYPEOF(x)>, "No safe 'as' cast available - please check your cast" ); } // else return as<C,x>(); } } using cpp2::cpp2_new; // Stabilize line numbers for "compatibility" static assertions that we know // will fire for some compilers, to keep regression test outputs cleaner #line 9999 // GCC 10 doesn't support 'requires' in forward declarations in some cases // Workaround: Disable the requires clause where that gets reasonable behavior // Diagnostic: static_assert the other cases that can't be worked around #if !defined(__clang__) && defined(__GNUC__) && __GNUC__ == 10 #define CPP2_REQUIRES(...) /* empty */ #define CPP2_REQUIRES_(...) static_assert(false, "GCC 11 or higher is required to support variables and type-scope functions that have a 'requires' clause. This includes a type-scope 'forward' parameter of non-wildcard type, such as 'func: (this, forward s: std::string)', which relies on being able to add a 'requires' clause - in that case, use 'forward s: _' instead if you need the result to compile with GCC 10.") #else #define CPP2_REQUIRES(...) requires (__VA_ARGS__) #define CPP2_REQUIRES_(...) requires (__VA_ARGS__) #endif #endif // #include "https://raw.githubusercontent.com/hsutter/cppfront/main/include/cpp2util.h"
Become a Patron
Sponsor on GitHub
Donate via PayPal
Source on GitHub
Mailing list
Installed libraries
Wiki
Report an issue
How it works
Contact the author
CE on Mastodon
CE on Bluesky
About the author
Statistics
Changelog
Version tree